Меркурий

Меркурий е най-малката планета в Слънчевата система и най-близката до Слънцето, около което прави по една обиколка на всеки 87,969 земни денонощия. Орбитата на Меркурий има по-голям ексцентрицитет от орбитите на всички други планети в Слънчевата система, като планетата има и най-малкия наклон на оста. Тя прави три завъртания около оста си на всеки две обиколки около Слънцето. Перихелият на орбитата на Меркурий прецесира около Слънцето с допълнителни 43 дъгови секунди на столетие, явление, обяснено едва през 20 век от общата теория на относителността. Гледан от Земята, Меркурий е сравнително ярък, с видима величина, варираща между −2,3 и 5,7, но е трудно да бъде наблюдаван, тъй като най-голямото му ъглово отдалечение от Слънцето е само 28,3°. Тъй като обикновено е скрит от блясъка на Слънцето, освен по време на слънчево затъмнение, Меркурий може да бъде наблюдаван само за кратки периоди преди изгрев, когато е близо до максималната си западна елонгация, или след залез, когато е близо до максималната си източна елонгация. Дори тогава в умерените ширини той остава близо до хоризонта и обикновено е скриван от относително яркото по здрач небе. В тропическите ширини наблюдението е по-лесно, тъй като Слънцето се издига и спуска по-стръмно към хоризонта, поради което периодът на полуздрач е по-кратък, а в някои части от годината еклиптиката пресича хоризонта много стръмно, поради което Меркурий може да се окаже относително високо в небето. Такива условия в тези области има например след залез около пролетното и преди изгрев около есенното равноденствие.

Слънчевата система

Слънчевата система е група астрономически обекти, включваща Слънцето и небесните тела, обикалящи около него — планети, планети джуджета, спътници, астероиди, комети, междупланетен прах и газ. Всички те са образувани при разпадането на молекулярен облак преди около 4,6 милиарда години. Основната част от масата на обектите в орбита се съдържа в осемте планети. Техните орбити са почти кръгови и лежат приблизително в една равнина, наречена еклиптика. Четирите вътрешни планети (Меркурий, Венера, Земята и Марс) са по-малки и носят названието планети от земен тип. Те са съставени главно от скали и метали. Четирите външни планети (Юпитер, Сатурн, Уран и Нептун) се наричат газови гиганти. Те са по-масивни и са съставени предимно от водород и хелий. Слънчевата система включва и две области с концентрация на по-малки обекти. Астероидният пояс, разположен между орбитите на Марс и Юпитер, е сходен по състав на планетите от земен тип. Намиращите се извън орбитата на Нептун транснептунови обекти са съставени главно от замръзнали вода, амоняк и метан. В тези области има пет обекта, които са достатъчно масивни, за да бъдат заоблени от собствената си гравитация, поради което са класифицирани като планети джуджета: Церера, Плутон, Хаумея, Макемаке и Ерида. Шест планети и три планети джуджета имат естествени спътници, а външните планети имат и пръстени от прах и други частици.

Големият взрив

Големият взрив е космологична научна теория, описваща ранното развитие на Вселената. Разширяването на Вселената, което следва от уравненията на общата теория на относителността, бива потвърдено с наблюденията за раздалечаване на галактиките. Екстраполирайки назад във времето стигаме до извода, че Вселената трябва да е била или много малка, или дори да е била събрана в точка – т. нар. сингулярност. Теоремата на Хокинг-Пенроуз показва, че от уравненията на общата относителност следва, че такава точка даваща начало на пространството и времето трябва да е съществувала. Естествено следствие от това е, че в миналото Вселената е имала по-висока температура и по-висока плътност. Терминът „Големият взрив“ се използва както в тесен смисъл за момента, в който започва разширението на Вселената (закон на Хъбъл), така и по-общо за преобладаващата днес космологична концепция обясняваща произхода и еволюцията на Вселената. Терминът Големият взрив (на английски Big Bang) е въведен през 1949 от Фред Хойл в радиопрограма на BBC. Хойл не поддържа теорията, а се опитва да ѝ се присмее.

Науки за Вселената

Изучаването на вселената е предмет на философията, както и науката космология, произлязла от физиката и астрономията, която се занимава с произхода, строежа и еволюцията на вселената. На всеки етап от развитието на човечеството е известна само ограничена част от вселената. С усъвършенстване на технологиите и методите на нейното изучаване, наблюдаваният обем става все по-голям. Метагалактика се нарича тази част, която е достъпна за наблюдения в настоящето или в непосредственото бъдеще. Използват се и термините позната вселена, наблюдаема вселена или видима вселена. Трябва да се отбележи, че някои учени, които се занимават с космология, предлагат различна терминология и дефиниция, приемайки модела на мултивселената,[4], според който нашата вселена не е сумата от цялата енергия и материя, а просто една от многото отделни вселени, които могат да съществуват паралелно и независимо една от друга.

Създаване на Вселената

Исторически погледнато, няколко космологически и космогонически теории са предлагани по отношение на наблюдението на Вселената. Първите количествени геоцентрични модели са направени от древните гърци, които предполагат, че Вселената е безкрайна и вечно съществуваща, но притежава концентрични сфери с краен размер, отговарящи на звездите, Слънцето и планетите, които се въртят около сферичната, но неподвижна Земя. След дългогодишни астрономически наблюдения и научни изследвания се стига до хелиоцентричната система на Николай Коперник за строежа на Вселената. Според него Слънцето се намира в центъра на Вселената, а Земята и другите планети обикалят по концентрични кръгови орбити около него. Идеята за хелиоцентризма е изказана още в древността от Аристарх Самоски, но Коперник успява да я обоснове научно и да обори геоцентричното учение на Клавдий Птолемей, господстващо тогава и официално поддържано от Църквата. С помощта на двете основни движения на Земята — въртенето около оста ѝ и около Слънцето — Коперник обяснява сложните движения на планетите, смяната на годишните времена и явлението прецесия и определя относителните разстояния на планетите до Слънцето. Хелиоцентричната система е изложена в безсмъртното му произведение „За въртенето на небесните сфери“ (De revolutionibus orbitum coelestium), над което той работи повече от 40 години. След това Нютон открива закона за всемирното привличане, въз основа на който се обяснява строежът на Слънчевата система и на цялата наша галактика (Млечния път). По-нататъшното развитие на астрономията води до откриването на множество други галактики. С усъвършенстването на оптичните уреди, изучаването на спектралните линии на галактиките и други астрономически обекти, науката установява съществуването на червеното отместване и реликтовото лъчение, които свидетелстват за разширението на Вселената и евентуалното нейно начало. Тези знания залягат в основите на съвременната космология.