Структура

Основният компонент на Слънчевата система е Слънцето, звезда от клас G2 в главната последователност, която съдържа 99,86% от известната маса на системата и е доминираща в гравитационно отношение.Четирите най-големи тела, обикалящи около Слънцето, газовите гиганти, съдържат 99% от останалата маса, като само Юпитер и Сатурн включват повече от 90%.

Общата структура на известните области от Слънчевата система включва Слънцето, четири относително малки вътрешни планети, заобиколени от пояс скални астероиди, и четири газови гиганта, заобиколени от замръзнали малки обекти в пояса на Кайпер. Понякога тази структура се разглежда като няколко самостоятелни области — вътрешна Слънчева система, включваща четирите земеподобни планети и астероидния пояс, и външна Слънчева система, включваща четирите газови гиганта.След откриването на пояса на Кайпер най-външните части на Слънчевата система се приемат за отделна област, съставена от всички обекти извън орбитата на Нептун.

Орбитите на повечето големи обекти, обикалящи около Слънцето, лежат в равнини близки до тази на земната орбита, която е наричана еклиптична равнина. Орбитите на планетите са много близки до нея, докато кометите и обектите от Пояса на Кайпер често имат орбити под значителен ъгъл спрямо земната.Освен това всички планети и повечето други обекти се движат по орбитите си в посоката на въртене на Слънцето — срещу посоката на часовниковата стрелка, гледано от северния полюс на Слънцето. Сред изключенията от това правило е Халеевата комета.

Галактическа орбита

Nova Zvezdna NaciqГалактическа орбита

Слънчевата система е част от галактиката Млечен път — спирална галактика с диаметър от около 100 000 светлинни години и съдържаща приблизително 200 милиарда звезди. Слънцето е типична за Млечния път звезда.

По някои изчисления Слънчевата система се намира между 25 000 и 28 000 светлинни години от галактичния център. Тя се движи със скорост от 220 km/s по орбитата си около галактичния център и извършва едно пълно завъртане за 226 млн. години. Спрямо положението на Слънчевата система втората космическа скорост на Млечния път е около 1000 km/s.Освен това, Слънчевата система се движи и спрямо Галактическата равнина, като ту изскача над равнината, ту потъва под нея. Това движението наподобява синусоида, която пресича равнината веднъж на всеки 33 млн. години, а всеки период трае около 65 милиона години.Слънчевата система има необичайно кръгова орбита, а орбиталната ѝ скорост е равна на вълните на сгъстяване в спиралните ръкави на Млечния път. По този начин тя остава извън тези вълни на сгъстяване, в които се формират нови масивни звезди. Те често експлодират като свръхнови и с интензивното си лъчение биха представлявали опасност за живота на Земята, ако бяха по-близо. Това, че се намират далече от Земята, вероятно е направило възможно зараждането на сложни многоклетъчни форми на живот на земната повърхност.

История на теорията

История на теорията

През 1927 белгийският йезуит Жорж Льометр пръв предлага хипотезата, че в началото на Вселената стои „експлозия” на „първичен атом”. Преди това през 1918 страсбургският астроном Карл Вилхелм Вюрц измерва систематично червено отместване на някои мъглявини и го нарича K-корекция. Той не осъзнава космологичните последствия, нито че тези мъглявини всъщност са галактики извън нашия Млечен път.

Създадената по това време обща теория на относителността на Алберт Айнщайн не допуска статично решение  – Вселената трябва или да се разширява, или да се свива. Самият Айнщайн смята това следствие за погрешно и се опитва да го избегне с добавянето на космологична константа. Айнщайн, който е бил наясно с библейската представа за начало на времето, не приема теорията на Льометр за „първичния атом”, понеже вижда в нея опит на Льометр да прокара идеята за Сътворението. По време на Общата теория на относителността е приложена към космологията за пръв път от руския учен Александър Фридман, чиито уравнения описват Вселената на Фридман-Льометр-Робъртсън-Уокър – Вселена без космологична константа.

Теоретични основи

Теоретични основи

В днешния си вид теорията за Големия взрив произтича от три предпоставки:

  1. Универсалност на физичните закони
  2. Космологичен принцип
  3. Коперников принцип

При появата им, тези идеи са приети просто като постулати, но днес се правят опити за проверка на всеки от тях. В резултат на тези изследвания е установено, че максималното отклонение на физичните константи в историята на Вселената е не по-голямо от порядъка на 10-5. Изотропността на Вселената, определяща космологичния принцип, е измерена с точност от 10-5, а хомогенността в най-едър мащаб е измерена с точност до 10%. Правят се опити да се измери коперниковия принцип с наблюдение на взаимодействието на галактически струпвания и реликтовото излъчване чрез ефекта на Суняев-Зелдович при точност от 1%.

Теорията на Големия взрив използва постулата на Вейл за да измери недвусмислено времето във всяка точка като „време от епохата на Планк”. Измерванията в тази система използват конформни координати, в които разширението на Вселената се изважда от измерванията на пространство-времето.

Астероиди в Слънчевата система

Asteroid hits Earth

Asteroid hits Earth

Астероиди

Към 24 февруари 2005 г. от общо 277 090 малки планети с изчислени орбити за 99 906 астероида орбиталните параметри са известни достатъчно добре, за да бъдат регистрирани, и от тях на 12 198 са дадени имена (598 астероида имат имена изискващи допълнителни определения). По-голямата част от откритите астероиди се намират в астероидния пояс между Марс и Юпитер в относителни нискоексцентрицитетни орбити. В пояса се изчисляват от 1,1 до около 1,9 млн. астероида с диаметър над 1 km и милиони по-малки.

Най-известните астероиди

Номер Име Диаметър (km) Дата на откриване Бележки
87 87 Силвия 260,9 16 май 1866 Тройна система на астероиди
243 243 Ида 56×24×21 29 септември 1884 Посетен от сондата Галилео
S/1993 (243) 1 Дактил 1,4 28 август 1993 Луна на Ида
253 253 Матилда 66×48×46 12 ноември 1885 Посетена от Ниър Шумейкър
433 433 Ерос 13×13×33 13 август 1898 Посетен от Ниър Шумейкър
624 624 Хектор 105 10 февруари 1907 Най-големият Троянски астероид
951 951 Гаспра 19×12×11 30 юли 1916 Посетен от сондата Галилео
2060 2060 Широн 200 18 октомври 1977 Първият открит астероид от групата на Кентаврите
3753 3753 Крутни 5 10 октомври 1986 Обикаля около Слънцето в орбита, подобаваща на сателит на Земята
4179 4179 Таутатис 4,5×2,4×1,9 4 януари 1989 През 2004 година минава в непосредствена близост до Земята
4769 4769 Касталия 1,8×0,8 9 август 1989 Първият астероид с радарна снимка
5261 5261 Еврика 20 юни 1990 От групата на Троянските астероиди

Етимология

Етимология

Думата вселена на английски Universe идва от старофренски Univers, производна на латинската universum, която в превод означава „всичко се върти като едно“ или „всичко се съедини в едно“.Може да се счита и като превод на гръцката дума за вселена περιφορα, „нещо, което се върти в кръг“.Този израз има връзка с модела на вселената на древните гърци, според който материята е разположена в концентрични сфери, които се въртят около общ център – Земята.

На български език думата вселена идва от старобългарски (въсєлѥнаѩ), с произход от старогръцки ойкумен (на старогръцки: οἰκουμένη), с основа οἰκέω, „населявам, обитавам“. Най-честите наименования за вселена, давани от древните гръцки философи идват от всичко (το παν), цялото (το ολον) или подредбата (κόσμος).

Възраст на вселената

Възраст на вселената

Вселената е много стара и както самата тя, така и представите за нея продължават да еволюират. Най-точното приближение за възрастта ѝ e 13,73±0,12 милиарда години, базирано на наблюдения на реликтовото излъчване.Съществуват и други методи (като използване на радиоактивни изотопи), но те са значително по-неточни и дават приближения от 11 до 20 милиарда години или от 13 до 15 милиарда години.Вселената се променя непрекъснато и погледнато исторически, никога не е била една и съща. Така например броят на квазарите и галактиките се мени, а самото галактическо пространство се разширява. Учените, които правят приземни наблюдения (и по този начин свързани с редица ограничения) трябва да имат предвид, че когато наблюдават светлината от галактика на разстояние 30 милиарда светлинни години, тази светлина е пътувала всъщност само 13 милиарда години, защото пространството между тях се е разширило. Това се потвърждава от наблюденията на далечни галактики, при които се забелязва червено отместване. Излъчваните фотони преминават към по-голяма дължина на вълната и по-малка честота по време на пътуването си. Наблюденията на супернова от тип Ia показват, че този процес на разширение се ускорява.

Метеорно тяло

Orbits20130215Метеорно тяло

Метеорно тяло или метеороид е твърдо тяло с относително малки размери, което се движи в междупланетното пространство. При навлизане в земната атмосфера предизвиква явлението метеор или болид, като в зависимост от масата и скоростта си се разрушава изцяло или частично на височина 60-100 км от земната повърхост, остатъка достигнал земната повърхност се нарича метеорит.