Проект: Създаване на Локална Мрежа в Компютърен Кабинет

Ученик: Иван Иванов

Клас: 11 Б

Предмет: Компютърни мрежи

Дата: 07.11.2024 г.

1. Цел на проекта

Целта на този проект е да създам локална мрежа (LAN) за компютърен кабинет в училище. Кабинетът ще има 12 компютъра, които ще се използват за учебни цели. Мрежата трябва да осигури достъп до интернет и споделени ресурси, като мрежов принтер и централен сървър за съхранение на учебни материали. Ще приложа основни мерки за сигурност и ще опиша как ще се осъществи връзката между устройствата.

2. Обхват на проекта

Мрежата ще бъде проектирана за компютърен кабинет в училище с 12 компютъра, мрежов принтер и централен сървър. Проектът включва:

- Създаване на мрежова топология за връзка между устройствата.
- Избор на подходящи мрежови компоненти.
- Разпределение на IP адреси.
- Основни мерки за защита на мрежата и контрол на достъпа.

3. Стъпки за изпълнение на проекта

3.1. Проучване на нуждите на мрежата

Първо, определих устройствата, които трябва да се свържат в мрежата на компютърния кабинет:

- Компютри (12 бр.) за учебни занятия и достъп до интернет.
- Мрежов принтер (1 бр.) за разпечатване на задания и материали.

- Сървър (1 бр.) за съхранение на файлове, до които всички ученици и учители да имат достъп.
- Рутер и Превключвател (Switch) за свързване на всички устройства в единна мрежа и осигуряване на достъп до интернет.

3.2. Избор на мрежово оборудване

За мрежата в компютърния кабинет избрах следните устройства:

- Рутер: Свързва локалната мрежа с интернет и осигурява мрежови услуги.
- **Превключвател (Switch):** Осигурява връзката между компютрите и останалите устройства в кабинета.
- Кабели: Ethernet кабели от тип САТ6 за по-добра производителност и стабилност.

3.3. Създаване на мрежова топология

Избрах звездообразна топология за тази мрежа, защото тя е лесна за управление и добавяне на нови устройства при нужда.

- Централно устройство: Превключвател (Switch), към който са свързани всички компютри, принтерът и сървърът.
- Свързаност с интернет: Превключвателят е свързан с рутера, който осигурява интернет достъп за всички устройства в кабинета.

Диаграмата по-долу (може да се начертае в Microsoft Visio или Draw.io) показва връзките между устройствата:

Устройство	Връзка към
Компютри (12)	Превключвател
Мрежов принтер	Превключвател
Сървър	Превключвател
Превключвател (Switch)	Рутер
Рутер	Интернет

3.4. Разпределение на ІР адреси

Разпределих IP адресите по следния начин, като използвах частния IP диапазон 192.168.1.0/24.

Устройство	IP Адрес
Рутер	192.168.1.1
Превключвател	192.168.1.2
Сървър	192.168.1.10
Компютър 1	192.168.1.101
Компютър 2	192.168.1.102
Компютър 3	192.168.1.103

Устройство	IP Адрес
Компютър 4	192.168.1.104
Компютър 5	192.168.1.105
Компютър 6	192.168.1.106
Компютър 7	192.168.1.107
Компютър 8	192.168.1.108
Компютър 9	192.168.1.109
Компютър 10	192.168.1.110
Компютър 11	192.168.1.111
Компютър 12	192.168.1.112
Мрежов принтер	192.168.1.50

3.5. Основни настройки за сигурност

- 1. Парола за рутера: Настроих силна парола за администратора на рутера, за да огранича достъпа до мрежовите настройки.
- 2. Контрол на достъпа чрез МАС адреси: Ограничих достъпа до мрежата само за разрешените устройства, като въведох МАС адресите им в списък.
- 3. **Wi-Fi сигурност:** В случай, че кабинетът има Wi-Fi точка за достъп, настроих сигурност чрез WPA2 за защита на мрежата от неоторизиран достъп.

3.6. Тестване на мрежата

За да се уверя, че мрежата работи правилно, направих следните тестове:

- Пинг тестове: Изпълних командата ping от всеки компютър към рутера, сървъра и други компютри, за да проверя връзката между тях.
- Проверка на интернет достъп: Убедих се, че всички компютри имат достъп до интернет чрез рутера.
- Тест на мрежовия принтер: Изпратих тестова страница от всеки компютър до принтера, за да проверя дали връзката работи правилно.

4. Резултати и заключения

След завършване на проекта, всички устройства бяха свързани успешно, а достъпът до интернет и мрежовите ресурси беше проверен. Мрежата функционира стабилно, като осигурява достъп до сървъра и принтера за всички работни станции. Настроените мерки за сигурност предпазват мрежата от неоторизиран достъп.

5. Презентация на проекта

По време на презентацията ще представя:

- Схема на мрежовата топология и обяснение защо избрах звездообразна топология.
- Разпределението на IP адресите и ролята на всяко устройство в мрежата.
- Мерките за сигурност, които приложих, и тяхната важност за защитата на мрежата.

6. Заключение

Този проект ми помогна да разбера как се проектира и изгражда компютърна мрежа в учебна среда. Научих как да разпределям IP адреси, какво е значението на мрежовите компоненти и как да осигуря защита на мрежата. Това знание е основа за по-нататъшно изучаване на компютърните мрежи и тяхната сигурност.

Приложения

- **Приложение 1:** Графична схема на мрежовата топология (може да бъде начертана в Draw.io).
- Приложение 2: Протокол от пинг тестовете и екранни снимки на резултатите от тестовете.

Критерии за оценяване

Критерий	Точки
Качество на документацията	20
Прецизност на мрежовата схема	20
Техническа коректност	30
Тестване и диагностика	20
Презентация и разбиране на	

Проект: Създаване на Малка Локална Мрежа

Ученик: [име на ученика]

Клас: [клас на ученика]

Предмет: Компютърни мрежи

Дата: [дата на предаване]

1. Цел на проекта

Целта на този проект е да запознае учениците с основните принципи на проектиране и изграждане на компютърни мрежи чрез създаването на малка локална мрежа (LAN). Учениците ще придобият практически умения за планиране на мрежи, избор на подходящо мрежово оборудване, разпределение на IP адреси и осигуряване на базова сигурност на мрежата.

2. Обхват на проекта

Учениците ще разработят концепция и симулация за мрежа, която би могла да бъде използвана в малко офис пространство или училищна среда. Проектът ще включва:

- Описание на нуждите на мрежата.
- Избор и подреждане на мрежови компоненти.
- Създаване на схема на мрежовата топология.
- Разпределение на IP адреси.
- Настройка на основни мерки за сигурност.

3. Стъпки за изпълнение на проекта

3.1. Проучване на нуждите на мрежата

Първоначално ще се определи броят на устройствата, които ще бъдат включени в мрежата, както и техните специфични нужди. Примерни устройства:

• Компютри (6 бр.) – Работни станции за служителите.

- Принтери (1 бр.) За общо ползване.
- Сървър (1 бр.) Централен сървър за съхранение на файлове и данни.
- Рутер и Превключвател (Switch) За свързване на устройствата в локалната мрежа и осигуряване на достъп до интернет.

3.2. Избор на мрежово оборудване

Избраното оборудване за мрежата ще включва:

- Рутер: Основен маршрутизатор, който свързва локалната мрежа с интернет.
- **Превключвател (Switch):** Устройство за разпределение на връзките между компютрите и другите устройства в локалната мрежа.
- Кабели: Ethernet кабели (категория САТ5е или САТ6) за физическо свързване на устройствата.

3.3. Създаване на мрежова топология

Създаването на мрежова топология представлява графично изображение на мрежата, което показва как са свързани отделните устройства.

- Топология: Ще бъде използвана звездообразна топология, при която всички устройства са свързани към централния рутер и превключвател.
- Диаграма: Изгответе диаграма на топологията, използвайки инструмент като Draw.io или Microsoft Visio. В диаграмата отбележете всички връзки и IP адреси на устройствата.

3.4. Разпределение на ІР адреси

В тази мрежа ще използваме частни IP адреси от диапазона 192.168.0.0/24. IP адресите ще се разпределят по следния начин:

Устройство	ІР Адрес	Забележка
Рутер	192.168.0.1	Основен шлюз
Превключвател	192.168.0.2	Управляем превключвател
Сървър	192.168.0.10	Файлов сървър
Компютър 1	192.168.0.101	Работна станция
Компютър 2	192.168.0.102	Работна станция
Компютър 3	192.168.0.103	Работна станция
Компютър 4	192.168.0.104	Работна станция
Компютър 5	192.168.0.105	Работна станция
Компютър 6	192.168.0.106	Работна станция
Принтер	192.168.0.50	Мрежов принтер

3.5. Основни настройки за сигурност

За осигуряване на базова сигурност в мрежата се въвеждат следните мерки:

- Пароли за рутера и превключвателя: Настройте администраторска парола за достъп до рутера и превключвателя.
- Филтриране на МАС адреси: Позволете само определени устройства (на база МАС адрес) да имат достъп до мрежата.
- Зашифрован достъп до интернет: Настройте Wi-Fi сигурност чрез WPA2 или WPA3, ако има безжична точка за достъп.

3.6. Тестване на мрежата

След като мрежата е настроена, е необходимо да се тества свързаността:

- **Ping тестове:** Тествайте връзката между различните устройства в мрежата с командата ping. Например, изпълнете командата ping 192.168.0.1, за да проверите връзката с рутера.
- Проверка на интернет достъп: Проверете дали всички устройства могат да се свържат с интернет.
- Тестване на мрежовия принтер: Изпратете тестова страница до принтера, за да се уверите, че печатането работи.

4. Резултати и заключения

В този раздел учениците трябва да обобщят резултатите от техния проект. Нека опишат какви трудности са срещнали и какви решения са приложили. Примерен текст:

След завършване на проекта, всички устройства са свързани успешно и достъпът до интернет е проверен. Мрежовата топология работи ефективно, а сървърът и принтерът са достъпни за всички работни станции. Основните мерки за сигурност са приложени и мрежата функционира стабилно.

5. Презентация на проекта

Учениците ще подготвят кратка презентация, в която ще обяснят:

- Как са проектирали мрежата и защо са избрали тази топология.
- Как са разпределили IP адресите и защо са избрали определени мрежови устройства.
- Какви мерки за сигурност са приложили и как са тествали мрежата.

6. Заключение

В заключение учениците трябва да отразят какво са научили от този проект и как тези знания могат да се прилагат в реалния живот. Например:

Проектът ми помогна да разбера как функционират мрежите и как различните устройства си взаимодействат. Научих се да конфигурирам IP адреси, да избирам мрежови компоненти и да прилагам основни мерки за сигурност. Това е основа за подълбоко изучаване на компютърните мрежи и сигурността.

Приложения

- Приложение 1: Графична схема на мрежовата топология.
- Приложение 2: екранни снимки от резултатите.

Критерии за оценяване

Критерий	Точки
Качество на документацията	20
Прецизност на мрежовата схема	20
Техническа коректност	30
Тестване и диагностика	20
Презентация и разбиране на проекта	10