През 1927 белгийският йезуит Жорж Льометр пръв предлага хипотезата, че в началото на Вселената стои „експлозия” на „първичен атом”. Преди това през 1918 страсбургският астроном Карл Вилхелм Вюрц измерва систематично червено отместване на някои мъглявини и го нарича K-корекция. Той не осъзнава космологичните последствия, нито че тези мъглявини всъщност са галактики извън нашия Млечен път.
Създадената по това време обща теория на относителността на Алберт Айнщайн не допуска статично решение – Вселената трябва или да се разширява, или да се свива. Самият Айнщайн смята това следствие за погрешно и се опитва да го избегне с добавянето на космологична константа. Айнщайн, който е бил наясно с библейската представа за начало на времето, не приема теорията на Льометр за „първичния атом”, понеже вижда в нея опит на Льометр да прокара идеята за Сътворението. По време на Общата теория на относителността е приложена към космологията за пръв път от руския учен Александър Фридман, чиито уравнения описват Вселената на Фридман-Льометр-Робъртсън-Уокър – Вселена без космологична константа.
През 1929 Едуин Хъбъл описва и наблюдения потвърждаващи теорията на Льометр без да е наясно с нея (статията на Льометр е преведена на английски от Артър Едингтън едва през 1931). Установил още през 1913, че повечето спирални мъглявини определени по-късно като галактики се отдалечават от Земята, той комбинира този факт с измервания на разстоянието определени чрез наблюдение на цефеиди в отдалечени галактики, за да установи, че галактиките се раздалечават във всички посоки със скорост спрямо Земята правопропорционална на разстоянието помежду им. Днес това явление е известно като закон на Хъбъл.
От космологическия принцип произтичат две обяснения на раздалечаващите се галактики. Според едното, поддържано и доразвито от Джордж Гамов, Вселената възниква от крайно горещо и плътно състояние в крайно време в миналото и оттогава се разширява. Другата възможност е теорията за устойчивото състояние на Фред Хойл, според която при раздалечаването на галактиките се появява нова материя. В този модел Вселената е приблизително еднаква във всяка точка от времето. За известно време подкрепата за тези две теории е равноразпределена.
През последвалите години наблюденията подкрепят идеята, че Вселената е възникнала от горещо плътно състояние. След откриването на реликтовото излъчване през 1965 това се смята за най-добрата теория за произхода и еволюцията на Космоса. До края на 60-те години много космолози смятат, че безкрайно плътната сингулярност в космологичния модел на Фридман е математическа идеализация и че Вселената се е свивала преди да достигне това състояние, а след това е започнала да се разширява отново. Това е теорията на Ричард Толман за пулсираща Вселена. През 60-те Роджър Пенроуз и Стивън Хоукинг доказват математически, че тази идея е неудачна и сингулярността е съществен елемент от общата теория на относителността. Това убеждава мнозинството космолози в теорията за Големия взрив, според която Вселената е възникнала преди крайно време.
Практически цялата теоретична работа в областта на космологията днес се състои в разширение и детайлизиране на основната теория за Големия взрив. Голяма част от текущата работа е насочена към разбиране на образуването на галактиките в контекста на Големия взрив, разбиране на самия момент на Големия взрив и съгласуване на наблюденията с основната теория.
Голям напредък в космологията на Големия взрив е отбелязан в самия край на 20 и началото на 21 век в резултат на усъвършенстването на технологията на телескопите и голямото количество спътникови данни, като тези от COBE и WMAP откриват анизотропията на реликтовото излъчване в малък мащаб, което може да доведе до разбиране на образуването на галактиките. През 1998, група учени от Екипа за изследване на свръхновите с голямо червено отместване определят разстоянията до голям брой свръхнови и измерват техните скорости, с което те повтарят наблюдението на Хъбъл отпреди 80 години, но с много по-далечни обекти. Изводът, до който стигат е, че някои свръхнови са толкова далече, че не би трябвало да ги наблюдаваме, освен ако Вселената не се е разширявала с по-голяма скорост от тази на равномерното разширяваща се Вселена.Това довело до неочакваното откритие, че разширяването на Вселената изглежда се ускорява.